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Abstract Seaweed aquaculture beds (SABs) that support the
production of seaweed and their diverse products, cover ex-
tensive coastal areas, especially in the Asian-Pacific region,
and provide many ecosystem services such as nutrient remov-
al and CO2 assimilation. The use of SABs in potential carbon
dioxide (CO2) mitigation efforts has been proposed with com-
mercial seaweed production in China, India, Indonesia, Japan,
Malaysia, Philippines, Republic of Korea, Thailand, and
Vietnam, and is at a nascent stage in Australia and New
Zealand. We attempted to consider the total annual potential

of SABs to drawdown and fix anthropogenic CO2. In the last
decade, seaweed production has increased tremendously in
the Asian-Pacific region. In 2014, the total annual production
of Asian-Pacific SABs surpassed 2.61 × 106 t dw. Total carbon
accumulated annually was more than 0.78 × 106 t y−1, equiv-
alent to over 2.87 × 106 t CO2 y−1. By increasing the area
available for SABs, biomass production, carbon accumula-
tion, and CO2 drawdown can be enhanced. The conversion
of biomass to biofuel can reduce the use of fossil fuels and
provide additional mitigation of CO2 emissions. Contributions
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of seaweeds as carbon donors to other ecosystems could be
significant in global carbon sequestration. The ongoing devel-
opment of SABs would not only ensure that Asian-Pacific
countries will remain leaders in the global seaweed industry
but may also provide an added dimension of helping to miti-
gate the problem of excessive CO2 emissions.

Keywords CO2mitigation . Seaweed aquaculture bed
(SAB) .Macroalgae . Blue carbon . Carbon donor . Asian
Pacific region

Introduction

Globally, carbon emissions have been increasing at an unprec-
edented rate leading to many negative impacts on individual
species and natural ecosystems, as well as human health, in-
frastructure, and economies (IPCC 2014). Maintaining and
improving the ability of coastal ecosystems to assimilate and
store carbon is a crucial aspect of climate change mitigation.
Between 1990 and 2010, estimated world-wide emissions of
all major greenhouse gases reached nearly 46 × 109 t, with
CO2 emissions in Asia among the fastest (EPA 2014). The
United States, China, European Union (EU), and India are
the top 4 emitting countries/regions, accounting for almost
61% of emissions (China—30%, the USA—15%, EU—
10%, and India—6.5%) respectively (Olivier et al. 2015).

Vegetated coastal ecosystems, such as seagrass beds, man-
groves, and tidal saltmarshes, make globally significant con-
tributions to carbon storage in biomass and long-term seques-
tration in sediment deposition (Duarte et al. 2013). The carbon
sequestered in both living and non-living biomass in the ocean
and coastal habitats has been termed Bblue carbon^
(Nellemann et al. 2009; Vierros 2013; Howard et al. 2014).
These ecosystems take CO2 from the atmosphere via photo-
synthesis at the same time releasing oxygen to the air. Some
carbon is released back into the atmosphere through respira-
tion and oxidation, but a proportion of assimilated carbon
remains in the form of living biomass and contributing to
organic carbon stored in soils (Murray et al. 2011). The stand-
ing biomass of commercial seaweed aquaculture beds (SABs)
represents additional aquatic vegetation that could enhance
carbon sequestration in coastal seas. This is especially signif-
icant where SABs are located in shallow waters where the
natural standing biomass of vegetation is absent or low
(Mitra et al. 2014).

Seaweeds, including kelps, are important primary pro-
ducers in coastal environments (Littler and Murray 1974;
Smith 1981; Okuda 2008). Seaweed beds and forests, together
with seagrass beds and mangrove forests, support the liveli-
hood of millions of people and provide many ecosystem ser-
vices in the coastal environments. The three-dimensional
structure of natural seaweed beds/forests provides shelter to

many organisms, and these beds also serve as feeding and
nursery grounds for many commercially important species
(Olafsson et al. 1995; Paddack and Estes 2000; Eklöf et al.
2006; Christie et al. 2009; Wattage 2011; Walsh and Watson
2011; Eklöf et al. 2012; Valderrama 2012). Natural seaweed
beds/forests play very important roles in facilitating recruit-
ment of marine organisms (Okuda 2008), absorbing excess
nutrients (Fei 2004; Yang et al. 2006; Huo et al. 2012), damp-
ening waves (Jackson 1984; Anderson et al. 1996; Lovas and
Totum 2001), buffering against ocean acidification (Gao and
Zheng 2010), and potentially in serving as a carbon sink for
anthropogenic CO2 (Hill et al. 2015).

Seaweed aquaculture is a key player in the world-wide
aquaculture industry, providing 2.38 × 106 t dw of global
aquaculture production by volume (FAO 2014). Seaweeds
are harvested for use as food, feed for aquaculture, fertilizer
for agriculture, and in industrial and pharmaceutical applica-
tions (McHugh 2003). SABs cover extensive coastal areas,
especially in NE and SE Asia. They provide many of the
ecosystem services provided by natural seaweed stands. For
example, SABs can provide a three-dimensional habitat for
epiphytic organisms as well as for fishes and invertebrates
(Zemke-White and Smith 2006). On top of this, given the
volume of biomass produced in SABs, the potential for
SABs to drawdown and fix anthropogenic CO2 could also
be significant (N’Yeurt et al. 2012; Chung et al. 2013). This
potential role of SABs, however, has not been seriously eval-
uated. It should be far easier to quantify the amount of carbon
sequestration by SABs than that by natural seaweed beds as
the latter are spatially and temporally more variable (Fei 2004;
Hill et al. 2015). Furthermore, being excellent nutrient re-
movers, farmed seaweeds like Pyropia (formerly Porphyra)
can be integrated into cultivation operations for fish that
produce high nutrient loadings (Chopin et al. 1999; He et al.
2008).

Some of the carbon fixed by SABs is converted to dis-
solved organic carbon (DOC), which is then utilized by the
bacterial community, converting DOC into dissolved inorgan-
ic carbon (DIC) through respiratory processes (Azam et al.
1983). Some of the CO2 released during seaweed harvesting
and processing is likely to be fixed by further uptake by newly
planted sporelings/germlings. Considerable biomass can be
found in wild populations of macroalgae. The contribution
of wild and SAB seaweeds to carbon sinks depends on the
fate of the organic material. By capturing atmospheric CO2

through photosynthesis, plants, including seaweeds, can store
large amounts of organic carbon in above- and below-ground
biomass and can be used as bioenergy crops (Jansson et al.
2010). Seaweeds and seagrasses account for the assimilation
of carbon ~1 Pg C y−1 (Chung et al. 2011). It has been esti-
mated that seagrasses, saltmarshes, and mangroves can cap-
ture 70% of C in the marine area (Nelleman et al. 2009,
Fourqurean et al. 2012). Seaweeds utilize inorganic carbon
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dissolved in seawater as free CO2 that diffuses in through
cellular membranes from the surrounding seawater (Turan
and Neori 2011) and as bicarbonate that is actively pumped
into the cell via a carbon concentrating mechanism (Giordano
et al. 2005; Raven et al. 2008). Moreover, the transformation
by seaweeds of DIC into organic carbon by photosynthesis
can decrease the pCO2 in seawater (Tang et al. 2011). Through
these processes the carbon sequestration in seaweed biomass
can be considered as a potential mitigation measure against an
increase in atmospheric CO2 (Chung et al. 2011; N’Yeurt et al.
2012; Chung et al. 2013). This, however, remains a topic of
considerable debate.

When macroalgae are used for animal or human foods, the
CO2 is simply regenerated during respiration and no net up-
take of carbon occurs. Some material though can be buried in
sediments or transported to the deep ocean where, even if re-
mineralization occurs, the resulting DIC can be retained in
deep oceanic waters for hundreds of years (Harrold et al.
1998; Dierssen et al. 2009; Trevathan-Tackett et al. 2015).
Alternatively, if macroalgal biomass is used as a substitute
for fossil fuels, this could potentially mitigate the rate of global
climate change by reducing our reliance on the latter (Chung
et al. 2011; N’Yeurt et al. 2012). The potential net reduction of
greenhouse gas (GHG) emissions could be estimated if, for
example, bioethanol from seaweeds produced in SABs is used
as an alternative to gasoline from fossil fuel sources; though,
GHG emitted in the biofuel production chain should be taken
into account. The achievable reduction in CO2 emissions may
vary, depending on the species farmed and the location and
growing season of the SABs. Some SABs and seagrass beds
may also take up enough CO2 to counter, or at least amelio-
rate, ocean acidification at a local scale (Rodella et al. 2015).
For instance, Semesi et al. (2009) have shown that seagrass
beds can maintain high pH and promote calcification in the
green alga Halimeda.

At the 5th Asian Pacific Phycological Forum held in
Bangkok, Thailand, in November 2005, a working group of
the Asian Pacific Phycological Association (APPA) was
established—the APPA-Asia Network—to examine the roles
of SABs in CO2 mitigation, especially in the Asian-Pacific
region. This is in line with the Ocean Forestry Global Plan
that proposed to return the concentration of atmospheric CO2

to 1960’s levels by 2200. With environmental, climatic, eco-
nomic, political, social, and energy sustainability, BOcean-
healing Seaweed Forests^ form a multi-dimensional global
plan to completely reverse global warming while feeding
10 × 109 people with 200 kg of fish per year per person
(N’Yeurt et al. 2012).

This review is a result of extensive discussion on this topic
within the network. In 2012, seaweed aquaculture production
in these Asian-Pacific countries was 97.6% of total world
production. This review therefore compiles the most up-to-
date data for SAB production and estimated CO2 mitigation

potentials in China, India, Indonesia, Japan, Malaysia,
Philippines, Republic of Korea, and Vietnam, where produc-
tion practices are already established, as well as in Australia
and New Zealand, where these concepts are just beginning to
be applied. These data are then compared with estimates from
natural seaweed beds and other coastal habitats, including
mangroves, seagrass beds, and salt marshes to evaluate the
relative significance of SABs in the mitigation of global
CO2 emission.

Materials and methods

To determine the total area used for seaweed cultivation and
total annual production between 2012 and 2014, we examined
data from the Food and Agricultural Organization (FAO) plus
country reports from members of the APPA-Asian Network,
collected in 2016. Estimates were based primarily on seaweed
biomass, using formulae developed previously (Mann 1972;
Zemke-White and Ohno 1999; Gevaert et al. 2008). Here, the
wet weight of biomass for all seaweeds was first converted to
dry weight values (10% of the wet weight was used as a
conservative value) (Mann 1972; Gevaert et al. 2008; Chung
et al. 2011; Roberts et al. 2015). Carbon content was assumed
to be 30% of dry weight (Mann 1972; Zemke-White and
Ohno 1999; Turan and Neori 2011; Arenas and Vaz-Pinto
2014; Roberts et al. 2015). The amount of CO2 that could be
sequestered was calculated by multiplying ‘C assimilation’ by
the amount of CO2 associated with 1 g of dry plant material
(the 3.67 factor described above—Duarte et al. 2005;
Pendleton et al. 2012; Mitra and Zaman 2014).

The percentage carbon content in harvested seaweed dry
weight varies among and within species. For example, in
Kappaphycus, the range of C content is from 20.7–43.1%
(Widowati et al. 2012). Muraoka (2004) reported C contents in
Saccharina to be 25–31%, Ecklonia 32–34%, Sargassum 33–
37%, and Gelidium 36–40%. In other studies, the percentage C
in Saccharina and Undaria was reported as 23.6%, 31.3% in
Gracilaria (Fei 2004), and 27.3% in Pyropia (McVey et al.
2002). Accordingly, we have used 30% as an informed approx-
imation for average C content, given the ranges cited above.

Estimating a globally relevant price on carbon sequestra-
tion is challenging (MacKay et al. 2015). Most studies calcu-
lated the benefits of carbon sequestration at between US$ 5 to
25 per tonne of CO2e (Fankhauser and Tol 1996; Emerton and
Kekulandala 2003). The actual carbon price in the EU ETC
under a price commitment is achieved by the country simply
setting its carbon price to a fixed rate of US$20 (Cramton et al.
2015). The level of carbon prices in the world market was
approximately US$15 to 25 in the EU ETS (Murray et al.
2011). The carbon price in the afforestation and blue carbon
is estimated to be in the same range (Murray et al. 2011; Jotzo
2012; Luisetti et al. 2013; Manley 2016). The annual
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economic value of CO2 sequestration has been estimated at
approximately US$4.0 million for coral reefs and mangroves
(Cesar et al. 2000), US$8.4 million for coral reefs (Samonte-
Tan and Armedilla 2004), and US$2.4 million for wild sea-
weed beds (Vasquez et al. 2014). As it is very complex to
accurately estimate the carbon price and is beyond the scope
of our study, here we simply apply a conservative value of
carbon as US$ 10 per tonne of CO2e.

Results

About 100 seaweed taxa have been cultivated in many areas
around the globe but about 98% of seaweed production is
accounted for by a smaller range of species from such genera
as Saccharina,Undaria, Pyropia, Eucheuma/Kappaphycus, and
Gracilaria (Turan and Neori 2011). Among Asian-Pacific coun-
tries, the major economically important seaweed groups have
been used for food and feed (humans and animals), materials
for industry, traditional medicine, biofertilizers, and as biofuel
(bioethanol, biodiesel) (Hong et al. 2007; Phang et al. 2010).

Among the seaweeds used commercially until 2010,
Saccharina japonica had the highest production by volume
(60%) followed by other taxa such as species of Pyropia,
Kappaphycus, Undaria, Eucheuma, and Gracilaria. Pyropia
spp. are the most economically valuable seaweeds among a
total global value of seaweed of US$ 6.4 × 109 (FAO 2014).
Recent data showed that Kappaphycus + Eucheuma have
surpassed global production of S. japonica with about
5.5 × 106 t y−1 (FAO, 2014).

Data for SAB production were compared among APPA
Network countries, incorporating information about current
harvests, C assimilation, and the potential for CO2 sequestra-
tion. No data were available for New Zealand and Australia
because neither country was active in these efforts before 2012.

SABs yields in APPA network countries are shown in
Table 1. In 2014, total annual production exceeded
2.61 × 106 t dw y−1. The highest production was in China
with 1.28 × 106 t dw y−1, while the lowest was in India, at
300 t dw y−1. Overall, estimated C assimilation was about
0.78 × 106 t dw y−1 and the potential for CO2 sequestration
could be 2.87 × 106 t y−1, valued at US$ 29 million based on
the conservative value of carbon of US$ 10 per tonne of CO2e.
Thus carbon sequestration by SABs may provide a relatively
small but significant contribution to the current world market
value of seaweed aquaculture production valued at over US$
6 × 109 (Table 1).

Between 2012 and 2014, the total average production of
SABs was 2.31 × 106 t dw y−1. China had the highest amount
(1.11 × 106 t dw y−1) while India had the lowest (300 t dw y−1).
The total C absorption was greater than 694,636 t dw y−1 dur-
ing our survey period, and the value of potential CO2 seques-
tration was estimated to be more than 2.54 × 106 t y−1

(Tables 2 and 3).

Discussion

China, Indonesia, and the Philippines are the world’s top three
producers and account for 91.31% of global seaweed produc-
tion. Production by Seaweed Aquaculture Beds (SABs) in
Asian Pacific Phycological Association (APPA) Network
countries increased from 20.02 Mt in 2012 to 26.13 Mt wet
wt in 2014 (FAO 2016). Our review demonstrates that
694,636 t of carbon (2.54 × 106 t of CO2e) could be assimi-
lated annually by SABs in the Asian Pacific region.

CO2 sequestration by coastal ecosystems

We compare SABs’ potential CO2 sequestration to terrestrial
ecosystems and other blue carbon ecosystems such as

Table 1 Estimates of algal
harvests, annual carbon
absorption, and potential CO2

sequestration by SABs in 2014

Algae
harvested
(t ww y−1)

Algae
harvested value
(1000 US$)

Algae
harvested
(t dw y−1)

Estimated C
assimilation
(t dw y−1)

Potential CO2

sequestration
(t dw y−1)

Carbon
pricea

(1000 US$)

China 12,819,485 2,096,041 1,281,949 384,585 1,411,425 14,114

India 3000 98, 300 90 330 3

Indonesia 8,971,463 1,513,253 897,146 269,124 987,758 9878

Japan 343,300 706,239 34,330 10,299 37,397 374

Malaysia 245,332 63,752 24,533 7360 27,011 270

R. Korea 1,082,027 485,430 108,203 32,461 119,131 1191

Philippines 1,549,576 256,293 154,958 46,487 170,608 1706

Vietnam 14,327 1863 1433 430 1577 16

Total 26,134,039 5,122,969 2,613,404 784,021 2,877,358 28,774

Source: FAO FIGIS (2016)
a Carbon price is US$ 10 per tonne of CO2e
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mangroves, seagrasses and saltmarshes (Table 3). Temperate,
boreal, and tropical forests are estimated to sequester 5096,
3599, and 4000 t CO2 km

−2, respectively (Schlesinger 1997;
Zehetner 2010). Annual range of soil CO2 accumulation rates
at saltmarshes and mangroves were 77–6287 and 73–2400 t
CO2e km−2 y−1 (Chmura et al. 2003). Salt marshes, man-
groves, and seagrasses stored 554, 510, and 304 t CO2e
km−2, respectively (Duarte et al., 2005). Globally, with total
area about 509,170 km2, mangroves, saltmarshes, and
seagrasses altogether store about 11 × 109 t C or about
42 × 109 t CO2 (Siikamaki et al. 2012). For example, a total
of 5774 km2 of blue carbon ecosystems (estimated at the
Abu Dhabi workshop; seagrass, algal mat, mangrove and
saltmarsh) potentially stored 3.9 × 106 t C (144.8 × 106 t
CO2e) (AGEDI 2013).When compared to wild seaweed beds,
49,939–124,849 km2 of Australian temperate wild seaweed
beds could store up to 109.9 Tg C (Hill et al. 2015) and
2012 km2 of algal and seagrass beds along the coasts of
Japan could store 2.7 × 106 t C (Muraoka 2004).

It is important to include SABs in C emission schemes as
they are increasing in terms of volume of production and
cultivation area, whilst other important blue carbon coastal
habitats (mangrove, seagrass, and saltmarsh areas) have de-
creased by 340,000–980,000 ha annually as a result of human
pressures on coastal ecosystems (Murray et al. 2011). In the
past 10-year production of seaweeds in Asian Pacific SABs
has more than doubled (FAO 2016) and is projected to con-
tinuously increase. SABs can thus play an increasingly impor-
tant role in C accumulation and sequestration.

SABs in Asian Pacific countries

Despite the benefits above, SABs also have some impacts on
surrounding areas such as reducing sunlight penetration, in-
creasing siltation, andmay lower seagrass biomass, shoot den-
sity, and cover area, although the impacts of SABs differ be-
tween cultivation methods.

In the Republic of Korea, SABs production from major
cultivated species of Undaria, Pyropia, Saccharina, and
Sargassum covered approximately 74,696 ha between 2003
and 2012, with total production of approximately
78,748 t dw y−1. During that period, the total C assimilation
is estimated to be 23,624 t y−1, or 86,700 t CO2 y

−1, and may
be attributed to the regional expansion or addition of new
areas of SABs, more intense cultivation, or the development
of new seaweed strains for cultivation. The rise in production
in Korea has become more pronounced since the 1980s be-
cause of various technical improvements, transplantation of
new species of Pyropia, and the establishment of new grounds
for cultivation (Chung 2015).

Both wild seaweed communities and SABs are important
habitats that can also be considered as short-term blue carbon
sinks and significant donors to long-term carbon sequestration
along the coasts of all continents (Hill et al. 2015; Trevathan-
Tackett et al. 2015). Countries with extensive shallow waters
suitable for seaweed cultivation should be further explored for
their contribution to mitigation efforts to reduce GHG emis-
sions and existing wild seaweed beds/forests should be the
focus of protection and restoration for their carbon sink miti-
gation potential.

Asian-Pacific countries have the capacity to increase
production from SABs while improving their potential for
CO2 sequestration by increasing cultivation areas and de-
veloping new strains of cultivated seaweeds. China,
Indonesia, Philippines, Republic of Korea, and Japan are
already major suppliers of seaweed to the rest of the world.
The Indonesian MMAF set a goal of preparing 60 clusters
to stimulate the production of 10 × 106 t wwt of seaweed
by 2014 (MMAF 2014). Finally, the 10th Malaysian Plan
was launched to optimize seaweed production while the 4th
National Agriculture Policy (2011–2020) was enacted in
order to boost the development of seaweed aquaculture
programs in that country (Kaur and Ang 2009). In the
period from 2010 to 2015, 900,000 ha of natural seaweed
beds with a standing crop of 60–70 × 105 t dw y−1 have

Table 2 Estimates of algal
harvests, annual C assimilation,
and potential CO2 sequestration
by SABs, total average between
2012 and 2014

Algae harvested
(t ww y−1)

Algae harvested
(t dw y−1)

C assimilation
(t dw y−1)

CO2 sequestration
(t dw y−1)

China 11,138,780 1,113,878 334,163 1,226,380

India 4000 400 120 400

Indonesia 8,630,107 863,011 258,903 950,175

Japan 389,874 38,987 11,696 42,925

Malaysia 282,084 28,208 8463 31,057

R. Korea 1,076,977 107,698 32,309 118,575

Philippines 1,619,275 161,928 48,578 178,282

Vietnam 15,477 1548 464 1704

Total 23,156,574 2,315,658 694,636 2,549,498

Source: FAO FIGIS (2016)
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been estimated as suitable for exploitation in Vietnam
(Hong et al. 2007).

Although commercial seaweed production is still limited in
Australia and New Zealand, cultivating seaweed in associa-
tion with ocean-based finfish farming is the focus of a new
research project by the South Australia government (MISA
2011). Trials are also underway for integrated multi-trophic
aquaculture in Victoria, Australia. Moreover, investigation of
the palatability and nutritional value of endemic Australasian
seaweeds has begun. In New Zealand in 2010, the biosecurity
categorization of the introduced kelp Undaria pinnatifida,
was changed to enable cultivation and harvesting in areas
where it is currently established (Barratt-Boyes 2012). Some
small-scale harvesting of U. pinnatifida introduced to
Tasmanian and Victorian waters is also occurring in Australia.

Growth in both seaweed volumes and economic value will
depend upon improved efforts by the seaweed industry. The
associated increase in biomass will provide economic returns
to coastal communities when harvested (Baruah et al. 2006).
Our estimates indicate that annually US$ 29 million could be
obtained from potential CO2 markets plus US$5.1 × 109 from
traditional seaweed markets. Although our estimate of the
annual carbon price for sequestration by current SABs is mod-
est, the potential for the ocean afforestation should not be
neglected (Table 1).

Seaweeds and SABs capabilities in CO2 sequestration

Seaweeds can act as effective carbon sinks because their bio-
mass is larger, and their turnover times are relatively longer,
than those of other marine organisms such as phytoplankton.
They also have higher proportions of recalcitrant carbon in
their tissues that are not easily broken down (Gao and
McKinley 1994; Delille et al. 2009; Trevathan-Tackett et al.
2015). Seaweeds can transformDIC via photosynthesis, there-
by decreasing the pCO2 in seawater. By removing a signifi-
cant amount of carbon from the ocean at harvest time (Tang
et al. 2011), these life forms provide potential tools for

biomass production as well as CO2 sequestration (Duarte
et al. 2005). In addition, seaweeds acting as CO2 sinks can
sequester carbon within their biomass throughout their life
spans (Chung et al. 2013) and beyond (Delille et al. 2009;
Trevathan-Tackett et al. 2015).

Seaweeds and SABs can potentially make effective contri-
butions to CO2 mitigation because some seaweeds have cell
wall structures and composition that can store carbon over the
long-term by becoming a carbon donor to other ecosystems
(Hill et al. 2015; Trevathan-Tackett et al. 2015) and by
converting the biomass into a range of bioenergy products
from biogas to liquid and solid biofuels. We discuss these
roles in more detail below.

We realize that the problem with seaweeds being consid-
ered effective organisms for carbon sequestration is their short
turnover time. Even though the life cycles and major accumu-
lation of C in seaweeds are relatively limited compared to
trees, a lot of CO2 can be accumulated in a short time with a
high productive capacity, so seaweeds are more effective as a
recycling resource for fuel in which CO2 accumulation and
retention occur over a much longer time (Muraoka, 2004;
Notoya, 2011). For example, Sargassum sp. turnover time in
the Sargasso Sea is 10 to 100 years (Ramus 1992). A more
recent study has found that not all seaweeds have short turn-
over times and some show potential for long-term carbon
sequestration because they contain compounds that are very
recalcitrant and are likely to break down slowly in sediments
(Trevathan-Tackett et al. 2015).

Recently, seaweeds have been considered as contributors to
coastal Bblue carbon^ in mitigating CO2 (Chung et al. 2011,
2013; Sondak and Chung 2015; Hill et al. 2015; Trevathan-
Tacket et al. 2015) because they contribute to storage of car-
bon by sequestration of CO2 from seawater through photosyn-
thesis and use it to increase their biomass (autochthonous car-
bon) that can potentially be transferred and deposited to other
coastal ecosystems or the deep sea benthos (allochthonous
carbon). In order for seaweeds to make significant contribu-
tions to global carbon sequestration, they must either have the

Table 3 Estimates of biomass,
annual C assimilation, and
potential CO2 sequestration by
other habitats

Ecosystem Area (km2) C assimilation
(t km−2)

CO2 sequestration
(t km−2)

References

Mangrove 139,170 139–7210 510–24,460 Duarte et al. (2005),
Siikimaki et al. (2012)

Saltmarsh 22,000–400,000 ≥218,180 ≥800,060 Chmura et al. (2003)*

Seagrass 319,000 6270 22,988 Siikimaki et al. (2012)

Forest

Temperate

Boreal

Tropical

10,400,000

13,700,000

19,622,846

n/a

n/a

n/a

5096

3599

4000

Schlesinger (1997),
Zehetner (2010)*

*Adopted from Mcleod et al. (2011)

n/a not applicable
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capacity to directly store and accumulate carbon within their
own habitat or transport biomass to receiver habitats where
carbon can be effectively buried and organic material
prevented from undergoing microbial mineralization (Hill
et al. 2015). Seaweeds and other aquatic vegetation can be
highly productive and an important source of carbon for adja-
cent ecosystems (Hyndes et al. 2014). In addition, seaweeds,
due to their high rates of production, fragmentation, and abil-
ity to be transported, would also appear to be able to make a
significant contribution as carbon donors to blue carbon hab-
itats (Hill et al. 2015; Trevathan-Tacket et al. 2015). Carbon in
the coastal ecosystems can be transported or donated to other
ecosystems in the form of particulate organic carbon (POC),
dissolved organic carbon (DOC), and dissolved inorganic car-
bon (DIC) (Hill et al. 2015), drifting seaweeds (Komatsu et al.
2008; Ito et al. 2009), and dislodgement of seaweed thalli
(Hobday 2000; McKenzie and Bellgrove 2009).

Transport of DOC and POC from coastal vegetated inter-
tidal habitats such as mangrove, seagrass, and seaweed can
also occur via dissolved or particular matter, through migra-
tion of animals from intertidal to subtidal areas, and through a
series of predator-prey interactions (trophic relay) (Kneib
1997; Bouillon and Connolly 2009). High rates of DOC loss
through leaching occur rapidly following detachment of mac-
rophyte leaves or thalli (Maie et al. 2006; Hyndes et al. 2012).
POC and DOC along with nekton provide major vectors of
carbon transfer across ecosystems within seascapes, and water
movement plays a major role in facilitating transfer of carbon
regardless of the vector (Hyndes et al. 2014).

Theories concerning the net transfer of carbon from inter-
tidal to subtidal areas are dominated by concepts about carbon
transfer among near-shore systems (Bouillon and Connolly
2009). Allochthonous materials such as macroalgae, terrestrial
detritus, and marine-derived suspended sediment can be de-
posited in the intertidal systems through tidal exchanges and
long-shore currents (Wolanski 1992; Bouillon et al. 2003;
Adame et al. 2012). It was suggested that one of the main
processes of carbon sequestration by seaweed beds is transfer
of the drifting seaweeds (i.e., Macrocystis, Durvillaea,
Eisenia, Ecklonia, and Sargassum) before sinking to benthic
habitats and the offshore mesopelagic zone (Harrold et al.
1998; Ito et al. 2009; Fraser et al. 2011). Some species of
seaweeds can be transported to new areas far from their origin
(e.g., Sargassum in the Sargasso Sea) and can substantially
increase their biomass in a free-floating stage, with a tendency
to rapidly sink to the deep sea floor, which makes it much
more efficient vehicle to carbon sequestration (Johnson and
Richardson 1977; Smetacek and Zingone 2013). Thalli are
eroded and dislodged whole kelp thalli form rafts on the ocean
surface (Hobday 2000; Xu et al. 2016) and these are deposited
as wrack along shorelines, inshore subtidal habitats, and can-
yons (Vetter and Dayton 1998; Orr et al. 2005; Wernberg et al.
2006; Crawley et al. 2009). Understanding how much of this

macroalgal biomass gets deposited in areas conducive to long-
term sequestration remains a key knowledge gap.

Animals also play an important role in carbon transfer
within coastal and terrestrial ecosystems. For example,
mesograzers such as gastropods are important in transferring
kelp-derived carbon to higher level consumers in a range of
marine ecosystems as well as coastal and terrestrial environ-
ment (Hyndes et al. 2014) and can therefore transport carbon
from one ecosystem to another. Other offshore macrograzers
such as dugongs, manatees, and green turtles consume large
quantities of seagrass and seaweed, thus significantly transfer-
ring carbon when they migrate between shallow and deeper
waters (Thayer et al. 1984). Moreover, various swimming,
diving, and wading bird species prey significantly on nekton
in shallow waters (Blaber 2000; Torres 2009) and cause trans-
fer of carbon from sea to land (Hyndes et al. 2014).

Continued use of seaweeds as food will not achieve long-
term CO2 sequestration. Nonetheless, if some of the seaweed
production can be converted to useful chemical products such
as hydrocolloids/phycocolloids, alginate, agar, and carrageen-
an as thickening and gelling agents in food and biochemical
industries, biofuels, and biochar (Turan and Neori 2011; Choi
et al. 2014; Roberts et al. 2015) and thus avoid the use of fossil
fuels, mitigation of CO2 emissions can be achieved indirectly.
Some reports suggest that macroalgae could be a useful source
of such chemicals using techniques such as fast hydrothermal
liquefaction (Bach et al. 2014). Other possible approaches
include anaerobic digestion for methane production
(Nkemka and Murto, 2010) or fermentation for bioethanol
(Yanagisawa et al. 2013; Adams et al. 2015).

Plants can act as C sequestration agents and sinks in long
term, in addition to their use as bioenergy crops, thereby re-
ducing GHG emissions from fossil fuels (Jansson et al. 2010).
Seaweeds can be classified as a bioenergy crop as they can
produce renewable energy from biomass. The use of seaweeds
as feedstock for biofuel is an emerging trend in biorefinery
research as one approach to mitigation of atmospheric CO2

(Bharathiraja et al. 2015). For example, Sargassum can be
converted to biooil, biogas or biochar through pyrolysis
(Kim et al. 2013b). The concept of combining bioenergy with
carbon capture and storage (BECCS) has been identified as
one mechanism to achieve energy production with a net neg-
ative atmospheric carbon emission (Hughes et al. 2012). The
Ocean Sunrise Project in Japan has been developed with aims
to combat global warming through seaweed bioethanol pro-
duction by contributing an alternative energy to fossil fuel
(Aizawa et al. 2007). Co-culturing macroalgae with industry
flue-gas provides a holistic solution for carbon sequestration
by recycling carbon and converting the biomass into a range
of bioenergy products from biogas to liquid and solid biofuels
(Cole et al. 2014).

Another possible solution is conversion of algal biomass
into biochar that can be suitable for deep-buried storage of
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carbon. Long-term C sequestration can be achieved when C
from above-ground biomass transfers into the soil for example
as biochar or phytoliths (Jansson et al. 2010). The application
of biochar to soil is proposed as a novel approach to establish a
significant, long-term, sink for CO2 (Farrelly et al. 2013).
Seaweed aquaculture not only offers food production and hy-
drocolloids but also possibilities for production of biochar
(Roberts et al. 2015). It was assumed by Bird et al. (2011) that
biochar produced from algal feedstock may also be compara-
tively high in nutrients that may make algal biochar attractive
for carbon sequestration as these might promote crop plant
growth in soils supplemented with the char. Suh et al. (2014)
found that S. japonica has potential for biochar and biofuel
production. Biochar can be produced from a range of com-
mercially cultivated seaweed such as Gracilaria edulis,
Eucheuma spinosum, Kappaphycus alvarezii, Sargassum
spp., Undaria pinnatifida, and Saccharina japonica biomass
where 1.9 Mt dry wt can yield up to 0.33 Mt C y−1 (Roberts
et al. 2015).

Conclusion

The ongoing development of seaweed aquaculture beds
(SABs) ensures that Asian Pacific countries will remain
leaders in the seaweed industry and in the achievement of
carbon sequestration by seaweeds. If cultivation remains bal-
anced, then the introduction of seaweed farming to additional
areas will provide new standing stock to sequester carbon in
those regions. Because SABs could provide important struc-
ture in coastal waters and may be considered as a key compo-
nent in programs to combat climate change, their geographical
coverage should be allowed to expand, enhancing the poten-
tial ecosystem services. SABs provide ecosystem services to
adjacent ecosystems like reducing eutrophication effects
caused by uncontrolled nutrient loading to coastal areas.
Actions could be taken to reduce these impacts such as prac-
ticing sustainable and environmentally friendly aquaculture
such as integrated multi-trophic aquaculture (IMTA).

We conclude that SABs can effectively contribute to CO2

mitigation by becoming carbon donors to other ecosystems
and converting the biomass into a range of bioenergy products
from biogas to liquid and solid biofuels. This would represent
a win-win strategy for coastal blue carbon ecosystemswith the
mitigation and adaptation measures that SABs could provide.
The fate of exudation and fragments of seaweeds as a carbon
sink in the deep sea should be assessed. Their strong perfor-
mance to date, as described here, leads us to believe that SABs
can be employed to sustain marine environments through their
varied ecosystem services and provide nutrients to low-pro-
ductive, adjacent coastal areas while also enhancing the econ-
omies of coastal communities.
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